Hematologic effects of flt3 ligand in vivo in mice.

نویسندگان

  • K Brasel
  • H J McKenna
  • P J Morrissey
  • K Charrier
  • A E Morris
  • C C Lee
  • D E Williams
  • S D Lyman
چکیده

We have investigated the effects of in vivo treatment with flt3 ligand (FL) on murine hematopoiesis, including mobilization of progenitors into the peripheral blood (PB). Mice were injected once daily with 10 micrograms recombinant human FL for 15 days. On days 3, 5, 8, 10, 15, and 22, mice were killed and analyzed for the number of leukocytes and colony-forming units (CFU) in bone marrow (BM), spleen, and PB. Splenic and PB cellularity increased with time in FL-treated mice. In the spleen, there was an increase in B cells, myeloid cells, and nucleated erythroid cells; in the PB, there was an increase in lymphocytes, granulocytes, and monocytic cells. The maximal number of CFU in the BM was observed after 3 days of FL treatment, giving 3.7- and 7.3-fold increases in CFU-granulocyte-macrophage (CFU-GM) and CFU-granulocyte, erythrocyte, monocyte, megakaryocyte (CFU-GEMM), respectively, compared with mouse serum albumin (MSA)-treated controls. After 8 days of FL treatment, there was a maximal 123- and 108-fold increase in splenic CFU-GM and CFU-GEMM, respectively. The maximal number CFU-GM and CFU-GEMM were seen in PB on day 10, with 537- and 585-fold increases, respectively. Burst-forming units-erythroid (BFU-E) increased in the same time frame as those of CFU-GM and CFU-GEMM in BM, spleen, and PB, although the magnitude was not as great. Primitive day-13 CFU-spleen (CFU-S) and phenotypically defined stem cells were also mobilized into the PB of FL-treated mice with similar kinetics and magnitude to that of CFU-GM and CFU-GEMM. We conclude from these studies that FL, when administered as a single agent, is a potent mobilizer of hematopoietic progenitors into the PB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis.

Dendritic cell (DC) development is efficiently supported by Flt3-ligand or GM-CSF in vitro, and lymphoid-organ DC maintenance in vivo is critically dependent on Flt3-ligand. However, the relevance of GM-CSF for lymphoid-tissue DC maintenance and the importance of both cytokines for nonlymphoid organ DC homeostasis are not defined. Here, we show that, although Gm-csfr and Flt3 are both expressed...

متن کامل

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

Prevention of experimental cerebral malaria by Flt3 ligand during infection with Plasmodium berghei ANKA.

Dendritic cells are the most potent antigen-presenting cells, but their roles in blood-stage malaria infection are not fully understood. We examined the effects of Flt3 ligand, a cytokine that induces dendritic cell production, in vivo on the course of infection with Plasmodium berghei ANKA. Mice treated with Flt3 ligand showed preferential expansion of CD8(+) dendritic cells and granulocytes, ...

متن کامل

Flt3 Ligand Regulates Dendritic Cell Development from Flt3+ Lymphoid and Myeloid-committed Progenitors to Flt3+ Dendritic Cells In Vivo

Stimulation of Flt3 receptor tyrosine kinase through its cognate ligand expands early hematopoietic progenitor and dendritic cells (DCs) in humans and mice. The exact developmental stages at which hematopoietic progenitors express Flt3, are responsive to its ligand, and subsequently develop to DCs, are not known. Here we show that common lymphoid and common myeloid progenitors, as well as stead...

متن کامل

FLT3 receptor and ligand are dispensable for maintenance and posttransplantation expansion of mouse hematopoietic stem cells.

Originally cloned from hematopoietic stem cell (HSC) populations and its ligand being extensively used to promote ex vivo HSC expansion, the FMS-like tyrosine kinase 3 (FLT3; also called FLK2) receptor and its ligand (FL) were expected to emerge as an important physiologic regulator of HSC maintenance and expansion. However, the role of FLT3 receptor and ligand in HSC regulation remains unclear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 88 6  شماره 

صفحات  -

تاریخ انتشار 1996